
Year: 2025 Volume: 3 Issue: 1

10.5281/zenodo.15733908

Artificial Intelligence in Radiology

REVIEW ARTICLE

Mete Özdikici¹

1.	 Department of Radiology, Taksim Training and Research Hospital, Istanbul, Turkey

Abstract

Abstract 

In radiology and undoubtedly in radiologic anatomy, artificial intelligence (AI) plays an 
important role in the diagnostic and therapeutic processes by offering revolutionary 
innovations in the field of imaging. AI algorithms enhance accuracy, speed, and efficiency 
by analyzing images obtained through methods such as X-rays, computed tomography 
(CT), magnetic resonance imaging (MRI), and ultrasound (US). Specifically, deep learning 
(DL) and machine learning (ML) applications enable early diagnosis by detecting fine 
details. This not only ensures patient safety but also alleviates the workload of radiologists 
and improves cost-effectiveness. Furthermore, AI offers safer imaging opportunities by 
reducing radiation doses and improving low-quality images. However, limitations such 
as data quality, ethical concerns, and patient privacy complicate the integration of AI into 
healthcare systems. In the future, AI is expected to expand its applications in radiology, 
offering more accurate diagnostic and therapeutic possibilities.
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Introduction

The earliest computers were machines designed to perform specific mathematical operations and 
predictable tasks. These machines did not possess the reasoning and analytical capabilities of humans. A 
significant milestone in this field was Alan M. Turing's seminal 1950 paper titled “Computing Machinery 
and Intelligence ”(1). The term “Machine Learning” was first introduced in 1959 by Arthur Samuel to 
describe algorithms that enable computers to learn without being explicitly programmed. Through this 
innovation, computers learned how to play checkers (2).

Artificial Intelligence (AI) is driving a revolutionary transformation in medicine, particularly impacting 
the field of radiology. In the medical context, AI refers to the development and application of algorithms 
and software techniques that can analyze medical data, learn from it, and optimize and improve their 
performance based on accumulated experience—ultimately aiming to enhance patient safety and reduce 
workload (3).

AI plays a critical role in optimizing image quality, accelerating image acquisition, and predicting both 
disease prognosis and treatment responses. To promote interdisciplinary research and bridge the gap 
between academia and industry, a strong synergy is needed between radiologists and AI developers. 
Collaboration between radiologists and AI developers can ensure that AI tools align more closely with 
clinical needs and effectively bridge the gap between theory and practice (4).

Radiology encompasses medical imaging techniques that are crucial for disease diagnosis and treatment 
planning. Traditionally, radiologists diagnose diseases using modalities such as X-rays, computed 
tomography (CT), magnetic resonance imaging (MRI), and ultrasonography (US) (5). AI algorithms enhance 
the accuracy, speed, and efficiency of image analysis, thereby reducing the radiologists' workload (4).

This review article explores the contributions and potential of AI in radiology under various subheadings.

TERMINOLOGY

RADIOLOGY: This field is divided into two main categories: diagnostic radiology and radiation therapy. 
Radiology involves the use of X-rays and other imaging technologies in medical diagnosis and treatment. 
These methods include radiography, mammography, CT, MRI, and US. Diagnostic use involves detecting 
diseases through medical imaging, while therapeutic use enables minimally invasive surgical procedures 
(5).

RADIOLOGICAL ANATOMY: A medical discipline focused on examining body structures and organs 
through radiologic imaging methods and correlating these images with anatomical features (5).

ARTIFICIAL INTELLIGENCE (AI): AI refers to the ability of computer software to perform tasks that 
typically require human intelligence—such as perception, recognition, learning, reasoning, inference, 
decision-making, planning, problem-solving, and communication (6). It emphasizes the creation of 
intelligent machines that operate and respond like humans (4).

ALGORITHM: A set of steps to solve a problem. Algorithms provide instructions to computers for deriving 
answers or performing tasks, which is especially useful when a precise solution is unattainable or data 
analysis needs to be expedited. They offer guidance and direction for AI systems (4).
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MACHINE LEARNING (ML): A subfield of AI that enables computers to learn from experience and 
acquire knowledge through examples, allowing them to adapt and enhance performance over time. 
Programming languages like Python are often used in ML applications (7,8).

DEEP LEARNING (DL): A revolutionary advancement in AI and a more specialized branch of ML. DL 
enables machines to perform tasks like classification, object recognition, speech recognition, and 
language translation with minimal error, using data such as sound, images, signals, and text (9). DL 
algorithms are developed using software such as MATLAB for tasks like object detection and recognition. 
These methods rely on neural network architectures. One of the most widely used forms of deep neural 
networks is the Convolutional Neural Network (CNN or ConvNet), which extracts features directly from 
images (10,11).

ROBOTICS: A technology domain associated with robots and an important field within AI. In the future, 
humans may possess auxiliary limbs or extensions to assist in physically challenging tasks, effectively 
becoming “cyborgs.” The term “cyborg” is short for “cybernetic organism” (12).

HOW DOES THE HUMAN BRAIN WORK?

Since AI research often focuses on analyzing human cognitive processes to develop similar artificial 
mechanisms, it is helpful to first understand how the human brain functions. The human brain weighs 
approximately 1,250–1,500 grams and consists of around 100 billion neurons. The two hemispheres of 
the brain differ both physically and functionally. When compared to a computer, the right hemisphere 
functions like a parallel processor, while the left hemisphere operates more like a serial processor. These 
two hemispheres are connected by a bundle of approximately 300 million nerve fibers (axons) called the 
corpus callosum.

Although both hemispheres process information, they do so differently, leading to distinct cognitive 
styles. The right hemisphere focuses on the present moment—it perceives your current location and 
immediate actions. For instance, while reading these lines, your awareness of light, temperature, and 
smell is processed through the right hemisphere. On the other hand, the left hemisphere is concerned 
with the past and the future. It captures the details of the current experience perceived by the right 
hemisphere, analyzes them further, and integrates them with past experiences to project into the future.

Generally, the right hemisphere is associated with creativity, emotional understanding, art, and music, 
whereas the left hemisphere is more dominant in analytical thinking, language, logic, and mathematics 
(13).

CATEGORIES OF ARTIFICIAL INTELLIGENCE

Today, AI systems are generally categorized into four main types (4,14,17):

Reactive Machines: These AI systems respond to immediate stimuli. Examples include IBM’s Deep Blue, 
which defeated world chess champion Garry Kasparov in 1997, and Google’s AlphaGo, which beat Go 
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champion Lee Sedol in 2016. Reactive machines cannot learn from past experiences and can only respond 
to current inputs. As such, they form a significant portion of machine learning systems.

Limited Memory Machines: These systems can learn from historical data, but only store it temporarily 
and lose it over time. Applications include autonomous driving systems, traffic signal control, and online 
messaging platforms.

Theory of Mind Machines: These AI systems possess the capability to communicate with humans and 
encompass all characteristics of the previous categories. They can understand human emotions and 
thoughts, engage in social interactions, and may even be applied in therapeutic contexts in medicine. 
Virtual assistants on smartphones are gradually evolving toward this level by adapting to users’ individual 
needs.

Self-Aware AI: This represents a more advanced form of Theory of Mind AI. Self-awareness is a cognitive 
trait typically developed in human childhood. For an AI to attain self-awareness, it must develop 
consciousness. Such AI would be capable of understanding abstract concepts and reasoning about them.

A “CENTRAL ARTIFICIAL INTELLIGENCE” CONTROLLING ALL ROBOTS AND SOFTWARE

THE DARKEST SCENARIO: A GOD-LIKE AI

When contemplating self-aware AI, one of the first images that comes to mind is a consciousness without 
emotions or the capacity to forget. This often evokes depictions like the humanoid robots from the 
Terminator franchise. However, the belief that AI requires a physical body is one of the most fundamental 
misconceptions. Imagine an AI that can improve its own software without human awareness. This entity, 
driven by a relentless desire to learn and evolve, would not be hindered by a physical form.

Existing solely in data, such a being could access the entirety of human history and potentially use that 
knowledge to subjugate or eliminate humanity. If such a system were to emerge suddenly, the likelihood 
of it causing millions of deaths within seconds is disturbingly high. This could potentially be a scenario 
leading to the end of civilization.

Currently, AI products marketed under this label are successful only in specific, narrow domains. There 
is no existing system that replicates all dimensions of human intelligence, nor is such a development 
expected in the near future (16,17).

HISTORY OF ARTIFICIAL INTELLIGENCE (1,2,14,15)

•	 1950: Alan M. Turing published his seminal paper “Computing Machinery and Intelligence.”

•	 1956: The term “artificial intelligence” (AI) was coined at the Dartmouth Conference, marking the 
beginning of modern AI research.

•	 1959: Arthur Samuel was the first to use the term “machine learning” (ML).

•	 1966: Joseph Weizenbaum developed ELIZA, the first simple chatbot to interact with humans.
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•	 1970: The first computer-assisted automatic electrocardiogram (ECG) interpretation was implemented.

•	 1972: MYCIN, one of the first expert systems in medicine, was developed to offer diagnosis and 
treatment recommendations for bacterial infections.

•	 1973: The British government ceased AI funding, initiating a period known as the “AI winter.”

•	 1980: The era of expert systems began, and decision support systems became widespread in fields 
like medicine, engineering, and finance.

•	 1980: CASNET (Causal Associational Network) was developed for diagnosing eye diseases.

•	 1980s: Computer-Aided Detection (CAD) systems were first introduced for medical image analysis.

•	 1988: AI began automatically detecting peripheral lung lesions.

•	 1990s: Early applications of AI in robotic surgery and medical imaging emerged; the Da Vinci Surgical 
System was developed.

•	 1997: IBM’s Deep Blue defeated world chess champion Garry Kasparov.

•	 2000: CAD systems were implemented in mammography for breast cancer screening.

•	 2004: CAD systems were introduced for lung cancer detection.

•	 2010s: Deep learning (DL) algorithms became widely used for detecting tumors, lesions, and 
anomalies in radiological images.

•	 2011: IBM’s Watson AI was used for cancer diagnosis and treatment.

•	 2011: IBM Watson gained widespread attention by defeating human contestants on the game show 
Jeopardy!.

•	 2012: Success of DL algorithms surged; Google Brain gained the ability to recognize cats after 
analyzing millions of YouTube videos.

•	 2012: Brain image segmentation and tumor grading were accomplished using DL.

•	 2016: Google DeepMind’s AlphaGo program defeated the world champion in the game of Go.

•	 2016: DL became common in medical imaging; DeepMind was applied for detecting eye diseases.

•	 2017: Stanford University compared AI systems to human radiologists in tumor detection tasks.

•	 2020: Artificial neural networks were employed for ECG interpretation.

•	 2020: AI began detecting lung lesions related to COVID-19, leading to the development of fully 
autonomous diagnostic systems in radiology.

•	 2023: With GPT-4, AI models gained the ability to process not only text but also images and video, 
advancing multimodal capabilities.

APPLICATIONS AND CONTRIBUTIONS OF ARTIFICIAL INTELLIGENCE IN RADIOLOGY

AI demonstrates notable expertise in a variety of tasks such as detecting thromboembolic infarcts or 
hemorrhages in the brain, segmentation, classification, and identifying large vessel occlusions. It plays 
a critical role in the early detection of neurodegenerative disorders such as Alzheimer’s and Parkinson’s 
disease. Its potential in predicting post-operative outcomes for brain and spinal surgeries is promising 
(3,4,18).
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ML algorithms can combine perfusion data from MRI with coronary anatomy from CT to create 
sophisticated 3D heart models, thereby improving the detection of cardiac ischemia and facilitating more 
precise procedural planning (4).

DL algorithms are increasingly used in tumor detection and classification, particularly in diagnosing 
breast, lung, and prostate cancers. They can distinguish between benign and malignant lesions and 
various tumor types. For example, AI has shown the ability to classify lung nodules on CT scans and 
accurately differentiate subtypes of renal cell carcinoma on MRI—often rivaling the expertise of 
experienced radiologists.

From pre-treatment CT images, AI can extract meaningful data to predict survival rates in lung cancer 
patients. Similarly, radiomic features derived from MRI scans have shown correlation with recurrence risk 
in glioblastoma patients.

The integration of radiomics introduces new quantitative metrics to radiology reports, enhancing the 
detection and characterization of both focal lesions and diffuse diseases in the liver and pancreas, 
potentially leading to improved clinical outcomes (4,19,20).

In fact, AI’s applications in radiology are extensive (16) and are summarized in Table 1.

Table 1. Artificial Intelligence Applications in Radiology

FIELD 	 APPLICATIONS

Emergency 
Radiology

Detection of intracranial hemorrhages, large vessel occlusions, fractures, free abdominal fluid, small 
bowel obstruction, intussusception detection

Head and Neck 
Radiology

Segmentation of lesions and anatomical structures, localization and classification of lesions, 
segmentation and classification of lymph nodes

Neuroradiology
Evaluation of brain anatomy, segmentation of cortical and subcortical structures, lesion detection, 
stroke and hemorrhage detection, aneurysm and degeneration detection

Chest Radiology
Detection of lung nodules and tumors, pneumonia, pneumothorax, emphysema, rib fractures, 
pulmonary embolism detection, diagnosis of obstructive lung disease

Cardiovascular 
Radiology

Coronary calcium scoring, coronary angiography, fractional flow reserve, plaque analysis, left 
ventricular myocardium analysis, myocardial infarction diagnosis, prognosis of coronary artery 
disease, cardiac function evaluation, and cardiomyopathy diagnosis and prognosis

Breast Radiology
Lesion detection, classification and characterization, breast density estimation, characterization of 
mammographic abnormalities

Abdominal 
Radiology

Segmentation of liver and spleen, segmentation of adrenal and urogenital structures, lesion detection 
and characterization, free intraperitoneal air, vertebral compression fractures, aortic dissection

Musculoskeletal 
Radiology

Detection of fractures in proximal humerus, hand, wrist and foot, detection of hip osteoarthritis, 
quantitative bone imaging for bone strength and quality assessment

Oncologic Imaging
Tumor segmentation and characterization, differentiation of benign-malignant lesions and 
pathological lymph nodes
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Contributions of Artificial Intelligence (AI) in Radiology (14,16,17):

1.	 Radiation Dose Reduction: AI algorithms enable safer imaging procedures for patients by reducing 
radiation exposure.

2.	 Image Quality Enhancement: AI algorithms can improve noisy or low-quality images. Compared to 
radiologists, they can offer higher accuracy rates and detect details that may otherwise be overlooked. 
Deep Learning (DL) techniques are capable of identifying even very subtle abnormalities.

3.	 Image Analysis and Diagnosis: AI algorithms utilize DL techniques to analyze and interpret medical 
images.

4.	 Disease Prediction and Monitoring: By analyzing findings in medical images, AI algorithms can 
predict disease progression and assist in personalized treatment planning. This enables patients to 
receive more effective and timely interventions.

5.	 Objectivity and Standardization: AI reduces variability in radiological assessments between 
different radiologists, thereby making the evaluation process more objective.

6.	 Reduction of Radiologists’ Workload: AI algorithms automate routine tasks and generate automatic 
reports, allowing radiologists to focus on more complex cases and reducing their overall workload.

7.	 Rapid Results and Cost Reduction: While traditional imaging methods can be time-consuming, AI 
accelerates this process, offering significant advantages in cases that require urgent diagnosis. Automated 
analysis ensures faster results, reduces costs, and enhances the cost-effectiveness of healthcare services.

8.	 Continuous Learning: AI algorithms can be updated with new data, improving their performance 
over time. This results in increasingly accurate diagnoses and better outcomes.

Limitations of Artificial Intelligence (6,16,17,21):

1.	 Data Quality and Quantity: The effectiveness of AI algorithms depends on the quality and size of 
the datasets used. Inaccurate or incomplete data can lead to incorrect outcomes. Moreover, collecting 
and processing large datasets can be a challenging and resource-intensive task.

2.	 Legal and Ethical Issues: The accuracy, transparency, and accountability of AI-generated results can 
be questioned. In addition, ethical concerns such as patient privacy and data security must be addressed.

Machine Learning

Artificial intelligence (AI) has various subfields similar to medical specialties, including machine learning 
(ML) and deep learning (DL) (22). ML, a subset of AI, focuses on developing algorithms that autonomously 
learn from data. These algorithms reference pre-labeled datasets to learn, improve over time, and evaluate 
new data accordingly (4). Effective ML models require extensive and high-quality datasets for training 
(17).

The major advantage of ML lies in its ability to handle large datasets that are beyond human analytical 
capabilities and to identify quantitative features with ease (2). ML incorporates a variety of algorithms 
and techniques that enable learning from data. At its core are two main approaches: supervised learning 
and unsupervised learning.

•	 Supervised learning relies on labeled input-output pairs from training datasets. The objective is 
to formulate a function that accurately maps inputs to outputs and can predict new cases reliably. Key 
algorithms include linear regression, logistic regression, and decision trees.
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•	 Unsupervised learning, on the other hand, autonomously explores data to identify patterns or 
relationships without predefined labels. It helps reveal inherent data structures and generate insights for 
complex problems. Well-known methods include k-means clustering, hierarchical clustering, and principal 
component analysis (PCA) (2,4,7).

Among ML approaches, deep learning stands out for its clinical potential. While other ML methods 
often require manual data annotation, DL is self-learning—it can train directly from raw data without 
needing pre-defined features. Only the categorization of raw inputs and outcomes is needed (7,15).

Deep Learning

DL is one of the most widely used methods in medical image analysis. With diverse neural network 
architectures, DL is especially prevalent in healthcare applications such as medical imaging (10,11). It is 
a subfield of ML, which in turn is a subfield of AI (see Figure 1). Compared to classical ML techniques, 
DL trains on larger datasets and typically delivers higher performance. DL systems can automatically 
perform complex classification tasks and feature extraction using multi-layered artificial neural networks 
(three or more layers) (4,17).

Figure 1. Artificial Intelligence, Machine Learning and Deep Learning Diagram

There is no universal or optimal method that guarantees the best results in ML or DL. Because each 
technique addresses different problems and performance metrics, direct comparisons can be misleading 
(5). DL-based computer-aided diagnosis (CAD) systems often outperform traditional CAD tools and have 
demonstrated diagnostic accuracy comparable to that of radiologists (4,20).

Thanks to powerful graphics processing units (GPUs) and the availability of big data, DL algorithms 
utilize deep neural networks with parallel computation capabilities, allowing multiple operations to 
run simultaneously. This parallelism significantly reduces processing time and provides advantages for 
complex image analysis. Prominent DL models include:
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•	 Convolutional Neural Networks (CNNs), frequently used for tasks such as segmentation and 
classification.

•	 Generative Adversarial Networks (GANs), used in image synthesis and enhancement (4,14).

Convolutional Neural Networks (CNNs)

One of AI's most significant applications in radiology is image classification, which distinguishes normal 
from pathological findings using CNNs. CNNs are currently the most effective models for image analysis 
and classification. These deep, layered neural networks are also the most commonly used DL methods. 
They require large, labeled image datasets to perform optimally (4,10).

CNNs deconstruct images into pixels, extract important features (e.g., edges, shapes), and learn to 
recognize complex structures. They can automatically detect pathologies such as tumors or lesions, 
making them suitable for complex radiological analyses (4).

Instead of standard matrix multiplication, CNNs use convolution operations at specific layers. They are 
especially well-suited for visual, auditory, and textual pattern recognition tasks and contribute significantly 
to computer vision and natural language processing (NLP) (4). CNNs require multiple layers to extract 
meaningful features. Their structure includes:

•	 Feature extraction layers: input layer, convolution + activation, and pooling.

•	 Classification layers: fully connected layer and output layer.

For example (23), a 9×9 input matrix combined with a 3×3 filter would yield a 7×7 output: (9−3)+1 = 7

•	 The convolutional layer (or transformation layer) identifies visual features.

•	 The pooling layer reduces image dimensions while preserving essential characteristics.

•	 The fully connected layer uses these features for classification (10).

GENERATIVE ADVERSARIAL NETWORKS (GANs) 
GANs are utilized for expanding image datasets, obtaining high-resolution 
images, and transferring textures/patterns from one image to another (10). 
To illustrate, imagine a counterfeiter (generator) producing fake currency while the police (discriminator) 
try to detect the counterfeit bills. Over time, the police become better at distinguishing the fakes, while 
the counterfeiter improves the realism of the counterfeit money. This iterative process continues until 
the generator produces images so realistic that the discriminator can no longer differentiate them from 
real ones. This architecture, composed of two neural networks engaged in continuous competition, is 
referred to as a Generative Adversarial Network (GAN) (5).

LABELING, SEGMENTATION, AND CLASSIFICATION 
In radiological imaging, labeling refers to annotating specific structures, while segmentation involves 
delineating the boundaries of these structures. Classification determines whether these structures are 
normal or pathological. Segmentation, also known as partitioning or delineation, refers to dividing an 
image into meaningful regions that exhibit distinct features. In this process, labels are generated for 
each pixel, and predictions are made based on these labels to derive insights. Typically, segmentation is 
performed first to detect tumors or lesions, followed by classification of their types. Convolutional Neural 
Networks (CNNs) are particularly useful at this stage (10).

Several improvements to CNN architectures have enabled more effective segmentation. For example, 
Long et al. introduced Fully Convolutional Networks (FCNs) (24), which were later adapted by Ronneberger 
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et al. to develop the U-Net architecture specifically for biomedical image segmentation (25). U-Net has 
been used for brain tumor segmentation on the BraTS 2020 dataset (10). The architecture consists of 
two main parts and is named “U-Net” due to its U-shaped structure. There are numerous U-Net variants 
designed for medical image analysis, including U-Net++ (26), RU-Net, R2U-Net (27), MultiResUNet (28), 
SAUnet (29), ASCU-Net (30), and MRFU-Net (31).

IMAGE GENERATION, TRANSFORMATION, AND ENHANCEMENT METHODS

In medical applications, deep learning architectures are used for image generation, transformation, 
and enhancement, including tasks such as data completion and pattern discovery. Image enhancement 
involves improving digital images (e.g., through super-resolution, noise reduction, deblurring, or contrast 
enhancement) to prepare them for advanced analyses such as segmentation and classification (10). These 
techniques allow data transformation between modalities or data synthesis in cases of scarcity, enabling 
more accurate algorithm performance. For instance, transformation between MRI and CT modalities is 
a significant application. Han et al. generated synthetic brain MR images using GANs and reported that 
even expert radiologists had difficulty distinguishing them from real images (32).

RADIOMICS

Radiomics is an emerging field that involves the automated extraction of quantitative features from 
medical images (e.g., CT, MRI, PET). It holds substantial potential for diagnosis, prognosis, and evaluation 
of response to treatment. However, challenges such as the need for standardization and validation must 
be addressed to ensure reliable and reproducible results. The primary strength of radiomics lies in its 
ability to complement traditional clinical practice with precise, quantitative information, potentially 
transforming clinical decision-making—particularly when large-scale data sharing is enabled (4,19).

Both classical machine learning (ML) and deep learning (DL) algorithms can be used in radiomic analyses. 
The choice depends on the data structure, the problem being addressed, and available computational 
resources. ML algorithms are typically used to analyze and classify features extracted manually or semi-
automatically—such as texture, shape, and intensity. DL algorithms, on the other hand, analyze image 
data more holistically and in greater detail, automatically extracting and classifying key features. In DL-
based radiomic analysis, feature extraction is performed directly by neural networks, thereby reducing 
the need for extensive preprocessing. Radiomic features are generally categorized as follows (19,33,34):

• Shape features: size, volume, and morphology of a tumor or lesion.

• Texture features: homogeneity or heterogeneity of the internal structure of a lesion.

• Intensity and pixel variation features: analysis of pixel intensity values and their distributions.

Manual segmentation by experts is considered the gold standard, but it is time-consuming. Automated 
segmentation methods, while objective, are susceptible to errors in cases of image artifacts, noise, or 
highly heterogeneous lesions (33,34). Radiomics can uncover data not perceptible through conventional 
methods, offering clinicians deeper insights. It can be used to assess tumor heterogeneity, determine 
disease staging, and predict treatment response (33).

Popular software tools for manual feature extraction include PyRadiomics (34), MaZda (35), LIFEx (36), 
and IBEX (37). Additionally, platforms such as NVIDIA DIGITS (https://developer.nvidia.com/digits) and 
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Deep Learning Studio offer graphical user interfaces (GUIs) for deep feature extraction using neural 
network layers (38). The most popular platforms for both manual and deep feature extraction include 
MATLAB and Python, due to their extensive libraries (8). Free tools such as Orange (8), Rattle in R (38), 
WEKA (39), RapidMiner (https://rapidminer.com), and Deep Learning Studio (https://deepcognition.ai) 
are also available. For advanced preprocessing of radiological imaging data, open-source tools such as 
ImageJ, MIPAV (Medical Image Processing, Analysis, and Visualization), and 3D Slicer are commonly used 
(4,19).

Model development can be carried out using various algorithms, including k-nearest neighbors (k-NN), 
naïve Bayes, logistic regression, support vector machines (SVM), decision trees, random forests, neural 
networks, and deep learning techniques (19). Ensemble learning methods, which combine multiple 
algorithms such as k-NN, naïve Bayes, and the C4.5 decision tree, are also frequently employed (40). 
Common internal validation methods in the literature include k-fold cross-validation, leave-one-out 
cross-validation (LOOCV), and the hold-out method. Essential components of DL architectures include 
activation functions (e.g., Rectified Linear Unit [ReLU], sigmoid, Softmax) and regularization methods 
(e.g., dropout layers). Furthermore, proven architectures and their variants are commonly used in tasks 
such as segmentation (4,19,33).

ARTIFICIAL INTELLIGENCE ALGORITHMS USED IN RADIOLOGY

Commonly used AI algorithms in radiology include the following: (3,4,9,14–17,41)

1. Machine Learning (ML)

•	 Decision Trees and Random Forests: Mainly used in feature selection and classification tasks.

•	 Support Vector Machines (SVM): Applied primarily to classification problems.

2. Deep Learning (DL)

•	 Convolutional Neural Networks (CNNs): Frequently used for image analysis, effective in detecting 
anomalies, tumors, fractures, and diagnosing pulmonary diseases in medical imaging.

•	 Recurrent Neural Networks (RNNs): Analyze temporal changes in medical images, such as 
monitoring disease progression using MR scans over time.

•	 Generative Adversarial Networks (GANs): Use two neural networks to generate realistic images, 
applied in image inpainting, resolution enhancement, and synthetic data generation.

•	 Transfer Learning: Pretrained DL models are fine-tuned on radiology datasets, enabling better 
performance with smaller datasets.

•	 Artificial Neural Networks (ANNs): Used broadly for classification and regression problems.

3. Image Processing Techniques

•	 Segmentation Algorithms: Identify specific regions in images, such as tumor or organ boundaries.

•	 Signal Processing Techniques: Enhance image quality and reduce noise.

4. Natural Language Processing (NLP)

•	 Radiology Report Analysis: Used to interpret and classify radiology reports, aiding in disease 
identification and diagnosis.



Ulus Med J.

20AI in Radiology

Özdikici M. Ulus Med J. 2025;3(1):9-28

SEGMENTATION ALGORITHMS IN RADIOLOGY

Accurate segmentation in radiology is essential for diagnosis, treatment planning, and prognosis. 
Recent advances in DL have significantly improved precision and automation in segmenting anatomical 
structures using imaging modalities such as X-ray, CT, MRI, and PET. Common segmentation algorithms 
include: (3,4,14–18,42,43)

1.	 Thresholding

•	 Principle: Classifies pixels based on a defined intensity threshold.

•	 Use Case: Suitable for high-contrast regions such as bone or tumors.

•	 Example: Brain tumor segmentation in MRI based on intensity differences.

2.	 Active Contours

•	 Principle: Known as "snakes algorithm", uses evolving curves from an initial point to outline objects.

•	 Use Case: Segmenting organs like the liver or lungs.

•	 Example: Lung nodule segmentation.

3.	 Watershed Algorithm

•	 Principle: Treats intensity gradients as a topographic surface to define regions.

•	 Use Case: Detects vessels, tumors, and abnormal tissues.

•	 Example: Tumor segmentation in brain or liver imaging.

4.	 K-means Clustering

•	 Principle: Groups pixels based on intensity or color similarity.

•	 Use Case: Tumor, organ, and lesion segmentation.

•	 Example: Brain and liver segmentation in CT and MR images.

5.	 Graph Cut

•	 Principle: Models pixels as graph nodes and segments based on similarity.

•	 Use Case: Organ and tumor segmentation, especially for tumor size estimation.

•	 Example: Brain and liver tumor segmentation.

6.	 Deep Learning-Based Segmentation

•	 Principle: Uses architectures like CNNs and FCNs to learn structural features for segmentation.

•	 Use Case: Segmenting organs, tumors, lesions, and vasculature.

•	 Examples:

o	 U-Net: Widely used for brain, liver, and lung organ segmentation.

o	 Mask R-CNN: Applied in multi-object detection and precise segmentation.

7.	 Region Growing

•	 Principle: Begins from a seed pixel, grows by merging similar neighboring pixels.

•	 Use Case: Brain or liver tumor segmentation.

•	 Example: Detecting brain aneurysms or liver lesions in CT/MRI.
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8.	 Intensity-Based Methods

•	 Principle: Segments based on pixel intensity values.

•	 Use Case: CT/MRI segmentation of organs such as brain, lungs, and liver.

•	 Example: Lung tissue segmentation in CT.

9.	 Atlas-Based Segmentation

•	 Principle: Matches the target image to a reference “atlas” image.

•	 Use Case: Brain and prostate segmentation.

•	 Example: Anatomical brain segmentation in MRI.

10.	 Statistical Shape Models

•	 Principle: Models shape variability for segmentation.

•	 Use Case: Organ and tumor segmentation (e.g., heart, brain).

•	 Example: Ventricular segmentation in cardiac imaging.

MEDICAL IMAGING DATASETS

One example is REMBRANDT (Repository of Molecular Brain Neoplasia Data), a brain cancer dataset 
including MRI and genomic data. MRI scans of 130 patients with histopathologically confirmed brain 
tumors were used to train and test seven ML and DL models, including CNN (AlexNet), decision trees, 
linear discriminant analysis, naïve Bayes, SVM, k-NN, and ensemble learning techniques. The CNN model 
(AlexNet) outperformed all ML classifiers across multi-class datasets (2).

Another study used five CNN architectures (AlexNet, VGG16, ResNet18, ResNet50, ResNet101) to 
classify normal and pneumonia patients using chest X-ray images. Features from each model were used 
individually and in combination. The Kaggle dataset was employed and augmented to 4× its original size. 
Classification used SVM and Softmax, with accuracies above 80% deemed successful (7,11).

For effective training and validation of AI algorithms, imaging datasets should be large and well-
annotated. These datasets include various modalities such as X-ray, CT, MRI, and ultrasound. Commonly 
used datasets include: (2,10,18,20,42)

1.	 MIMIC-CXR

•	 370,000+ chest X-rays and reports.

•	 Used for training AI models in thoracic disease diagnosis.

•	 Source: MIT.

2.	 CheXpert

•	 224,000 chest X-rays with diagnostic labels.

•	 Application: Thoracic disease classification.

•	 Source: Stanford University.

3.	 NIH CXR

•	 112,000+ chest X-rays and 30,000+ reports.

•	 Includes 14 disease classes (e.g., pneumonia, lung cancer).
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•	 Public and open access.

4.	 RSNA Pneumonia Detection Challenge Dataset

•	 30,000+ chest X-rays.

•	 Purpose: Pneumonia detection.

•	 Source: Radiological Society of North America (RSNA).

5.	 LUNA16

•	 1,000 CT scans for lung nodule detection.

•	 Used in lung cancer detection.

TCIA (The Cancer Imaging Archive)

•	 CT, MRI, PET, clinical and genomic data for 20+ tumor types.

•	 Public portal.

7.	 BraTS (Brain Tumor Segmentation Dataset)

•	 MR images for brain tumor segmentation.

•	 Application: Glioblastoma segmentation/classification.

8.	 OASIS

•	 Brain MRI for Alzheimer’s and neurodegenerative disorders.

9.	 DDSM

•	 10,480 mammography images (CC and MLO views) in JPEG format.

•	 Used in breast cancer screening and microcalcification detection.

10.	 ProstateX

•	 Multiparametric MRI for prostate cancer diagnosis and segmentation.

11.	 MosMedData

•	 1,100+ CT scans related to COVID-19.

•	 Used for diagnosis and severity assessment.

12.	 COVID-CT and SARS-CoV-2 CT Datasets

•	 CT scans of COVID-19 patients.

•	 Used for COVID-19 detection.

AI SOFTWARE USED IN RADIOLOGY

AI-based software in radiology has grown significantly, supporting radiologists in diagnosis, reporting, 
and patient management by enhancing speed and accuracy. Notable AI tools include: (3,4,14,16,17)

1.	 Zebra Medical Vision

•	 Application: Automated diagnosis and image analysis.

•	 Features: Analyzes X-ray, CT, and MRI to assist in disease diagnosis.
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2.	 Aidoc

•	 Application: Automated image analysis and emergency diagnosis.

•	 Features: Assists emergency diagnosis of brain, lung, and spinal images.

3.	 Arterys

•	 Application: Cardiology and oncology imaging.

•	 Features: Cloud-based platform analyzing CT and MRI, aiding in heart disease and cancer diagnosis.

4.	 Viz.ai

•	 Application: Stroke detection.

•	 Features: Analyzes brain scans for fast stroke diagnosis and speeds up treatment.

5.	 qXR by Qure.ai

•	 Application: Pulmonary disease detection.

•	 Features: Detects tuberculosis, COVID-19, and lung cancer in X-rays.

6.	 Infervision

•	 Application: Chest X-ray and CT analysis.

•	 Features: Detects conditions like lung cancer and pneumonia.

7.	 RadNet

•	 Application: Full-body imaging.

•	 Features: Analyzes CT, MRI, and PET using a comprehensive AI platform.

8.	 Lunit Insight

•	 Application: Breast and thoracic radiology.

•	 Features: Detects cancer in mammography and chest X-rays.

Discussion

The impact of artificial intelligence (AI) technologies in the medical field is increasingly evident, particularly 
in imaging and diagnostic processes such as radiology. In the future, AI-assisted radiology is expected to 
have a broader scope of application and play a pivotal role in transforming healthcare services. Machine 
Learning (ML) and Deep Learning (DL)-based AI systems that continuously learn have significant potential 
in radiology, particularly in enhancing diagnostic accuracy, saving time, and developing personalized 
treatment strategies. These technologies can integrate data from clinical, pathological, biochemical, and 
genetic tests with radiological imaging, enabling more consistent, highly accurate, and reliable outcomes 
(7,14,33).

One of the most significant contributions of AI in radiology is the automation of image processing and 
analysis procedures. AI functionalities such as labeling, segmentation, and classification assist radiologists 
in interpreting complex images more quickly and accurately. For instance, in breast cancer screenings, 
chest radiographs, or brain MRIs, AI algorithms can increase early diagnosis rates by detecting diseases at 
earlier stages. Furthermore, advanced AI algorithms have the potential to optimize treatment processes 
and form the foundation of personalized medicine. This presents a substantial advantage, particularly in 
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cancer treatments and the management of chronic diseases (18,28,34).

Another important contribution of AI is its application in remote healthcare services (telemedicine). 
Globally, especially in rural and developing regions, there are significant inequalities in access to qualified 
healthcare services. AI-assisted radiology systems can facilitate access to expert radiologists for patients 
in such areas, contributing to a more equitable healthcare provision on a global scale. The importance 
of remote diagnosis and treatment processes has become even more apparent during crises such as 
pandemics. In such scenarios, AI can enhance the flexibility and resilience of healthcare systems (14,15,33).

Advancements in image processing algorithms have enabled the use of AI not only in diagnostic processes 
but also in treatment procedures. AI-assisted systems are increasingly being used in the field of robotic 
surgery. For example, robotic surgical systems such as "CyberKnife" perform operations with lower error 
rates thanks to AI algorithms. These systems enhance surgeons’ manual dexterity and enable safer, more 
precise surgeries using minimally invasive techniques. In the future, it may even be possible to have fully 
autonomous robots operating in surgical settings (12,18).

However, there are several challenges to the widespread adoption of AI in radiology and the broader 
medical field. Chief among these are issues related to data quality and data security. For AI algorithms to 
generate accurate and reliable results, access to large amounts of high-quality data is essential. Moreover, 
the privacy and security of patient data pose critical ethical concerns. Regulatory frameworks must be 
established regarding data sharing and usage, and ethical and legal principles must be clearly defined. 
Additionally, the “black box” nature of AI systems, referring to the lack of transparency in decision-
making processes, including medical, legal, and financial responsibilities, can undermine the trust of 
clinicians and patients in AI technologies (6,16,21).

In conclusion, the opportunities offered by AI in radiology and medicine have the potential to shape the 
future of healthcare services. Its advantages in improving diagnostic and therapeutic accuracy, saving 
time, and enabling personalized medicine make AI an indispensable tool. Nevertheless, issues such as 
data quality, ethical considerations, and transparency must be addressed with care. A multidisciplinary 
approach is essential for the effective and reliable implementation of AI, necessitating collaboration 
among healthcare professionals, engineers, ethicists, legal experts, insurance providers, and policymakers. 
Through such collaboration, the full potential of AI can be realized, ushering in a new era in healthcare 
services.

ABBREVIATIONS 
AI: Artificial Intelligence 
ANN: Artificial Neural Networks 
CT: Computed Tomography 
CAD: Computer-Aided Detection 
CNN: Convolutional Neural Networks 
DL: Deep Learning 
ECG: Electrocardiography 
FCN: Fully Convolutional Networks 
GAN: Generative Adversarial Networks 
GPU: Graphics Processing Unit 
GUI: Graphical User Interface 
ML: Machine Learning 
MRI: Magnetic Resonance Imaging 
NLP: Natural Language Processing 
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RNN: Recurrent Neural Networks 
US: Ultrasonographyt

SOME USEFUL LINKS

https://acikveri.saglik.gov.tr/

https://altair.com/altair-rapidminer

https://deepcognition.ai/

https://developer.nvidia.com/digits

https://www.editverse.com/tr/the-human-connectome-project-brain-mapping/

https://elsevier.health/en-US/marketing/radiologists/pinpoint-complex-and-common-radiology-cases-
with-statdx

https://www.geminibilgi.com.tr/statdx-654.html

https://keras.io/

https://www.lunit.io/en

https://www.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab

https://oxipit.ai/products/chesteye/

https://pyradiomics.readthedocs.io/en/latest/#

https://www.python.org/

https://www.qure.ai/

https://www.radiantviewer.com/

https://radiology.healthairegister.com/

https://www.slicer.org/

https://teleradyoloji.saglik.gov.tr/

https://www.tensorflow.org/?hl=tr

Declaration of interest: The authors report no conflicts of interest.

Funding source: No funding was required

Ethical approval: No need for reviews.

Acknowledgments: No

Peer-review: Evaluated by independent reviewers working in at least two different institutions appointed 
by the field editor.

Data availability

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author upon reasonable request.

 
 

https://acikveri.saglik.gov.tr/
https://altair.com/altair-rapidminer
https://deepcognition.ai/
https://developer.nvidia.com/digits
https://www.editverse.com/tr/the-human-connectome-project-brain-mapping/
https://elsevier.health/en-US/marketing/radiologists/pinpoint-complex-and-common-radiology-cases-with-statdx
https://elsevier.health/en-US/marketing/radiologists/pinpoint-complex-and-common-radiology-cases-with-statdx
https://www.geminibilgi.com.tr/statdx-654.html
https://keras.io/
https://www.lunit.io/en
https://www.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab
https://oxipit.ai/products/chesteye/
https://pyradiomics.readthedocs.io/en/latest/
https://www.python.org/
https://www.qure.ai/
https://www.radiantviewer.com/
https://radiology.healthairegister.com/
https://www.slicer.org/
https://teleradyoloji.saglik.gov.tr/
https://www.tensorflow.org/?hl=tr


Ulus Med J.

26AI in Radiology

Özdikici M. Ulus Med J. 2025;3(1):9-28

Contributions

Research concept and design: MÖ

Data analysis and interpretation: MÖ

Collection and/or assembly of data: MÖ

Writing the article: MÖ 

Critical revision of the article: MÖ

Final approval of the article: MÖ

References

1.	 Turing AM. Computing machinery and intelligence. Mind. 1950;LIX(236):433-60.

2.	 Yılmaz MÖ, Aydın SO, Baran O. Nöroşirürjide büyük veri ve yapay zekâ: Görüntüleme uygulamaları 
[Big Data and Artificial Intelligence in Neurosurgery: Imaging Applications].  Türk Nöroşir Derg. 
2022;32(2):142-49. Turkish

3.	 Yapay zekâ [Artificial intelligence] [Internet]. Erişim adresi [access address]: https://tr.wikipedia.org/
wiki/Yapay_zekâ.

4.	 Najjar R. Redefining radiology: A review of artificial intelligence integration in medical 
imaging. Diagnostics. 2023;13:2760. 

5.	 Atlan F, Pençe İ. Yapay zekâ ve tıbbi görüntüleme teknolojilerine genel bakış [An Overview of Artificial 
Intelligence and Medical Imaging Technologies]. Acta Infologica. 2021;5(1):207-30. Turkish

6.	 Özdemir L, Bilgin A. Sağlıkta yapay zekânın kullanımı ve etik sorunlar [The Use of Artificial Intelligence 
in Healthcare and Ethical Issues]. SHYD. 2021;8(3):439-45. Turkish

7.	 Janssen NE. A machine learning proposal for predicting the success rate of IT-projects based on 
project metrics before initiation. University of Twente; 2020.

8.	 Demšar J, Curk T, Erjavec A, et al. Orange: Data mining toolbox in Python.  J Mach Learn Res. 
2013;14:2349-53.

9.	 Sayar B. Tıp alanında yapay zekânın kullanımı [The Use of Artificial Intelligence in Medicine]. Acta 
Medica Ruha. 2023;1(1):27-33.Turkish

10.	Eker AG, Duru N. Medikal görüntü işlemede derin öğrenme uygulamaları [Deep Learning Applications 
in Medical Image Processing]. Acta Infologica. 2021;5(2):1-16. Turkish

11.	Er MB. Önceden eğitilmiş derin ağlar ile göğüs röntgeni görüntüleri kullanarak pnömoni 
sınıflandırılması [Classification of Pneumonia Using Chest X-Ray Images with Pretrained Deep Neural 
Networks]. Konjes. 2021;9(1):193-204. Turkish

12.	Robotik [Robotics]. [Internet]. Erişim adresi [access address]: https://tr.wikipedia.org/wiki/Robotik.

13.	İnsan beyni [Human Brain]. [Internet]. Erişim adresi [access address]:  https://tr.wikipedia.org/wiki/
İnsan_beyni.

14.	Pianykh OS, Langs G, Dewey M, et al. Continuous learning AI in radiology: implementation principles 
and early applications. Radiology. 2020;297:6-14.

15.	Yu KH, Beam AL, Kohane IS. Artificial intelligence in health care. Nat Biomed Eng. 2018;2(10):719.

https://tr.wikipedia.org/wiki/Yapay_zek%C3%A2
https://tr.wikipedia.org/wiki/Yapay_zek%C3%A2
https://tr.wikipedia.org/wiki/Robotik
https://tr.wikipedia.org/wiki/%C4%B0nsan_beyni
https://tr.wikipedia.org/wiki/%C4%B0nsan_beyni


Ulus Med J.

27AI in Radiology

Özdikici M. Ulus Med J. 2025;3(1):9-28

16.	Yordanova MZ. The applications of artificial intelligence in radiology: Opportunities and challenges. Eur 
J Med Health Sci. 2024;6(2):11-4.

17.	Waller J, O’Connor A, Raafat E, et al. Applications and challenges of artificial intelligence in diagnostic 
and interventional radiology. Pol J Radiol. 2022;87.

18.	Bakas S, Reyes M, Jakab A, et al. Identifying the best machine learning algorithms for brain tumor 
segmentation, progression assessment, and overall survival prediction in the BRATS challenge. 2018.

19.	Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for 
beginners. Diagn Interv Radiol. 2019;25:485-95.

20.	Huang X, Shan J, Vaidya V. Lung nodule detection in CT using 3D convolutional neural networks. 
In: Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI); 2017 Apr 18-
21; Melbourne, Australia. New York: IEEE; 2017:379-383.

21.	Özçiftçi S, Akpınar A, Dönmez O. Tıp etiği araştırmalarında Q metodolojisi kullanımı: Radyoloji alanında 
yapay zekâ etiği araştırması örneği [Use of Q Methodology in Medical Ethics Research: An Example of 
Artificial Intelligence Ethics Study in the Field of Radiology]. Lokman Hekim Dergisi. 2024;14(2):418-
29. Turkish

22.	Ozlu C, Acet A, Korkut B, Yalcin C. Artificial intelligence studies and data analysis in chronic lymphocytic 
leukemia: A current review. Selcuk Med J. 2024;40(3):146-51.

23.	Vatansever S, Bıyıklıoğlu HF. Sağlık görüntüleme sistemlerinde görüntü işleme ile hastalık teşhisi 
[Disease Diagnosis Using Image Processing in Medical Imaging Systems]. Yıldız Teknik Üniversitesi; 
2021.Turkish

24.	Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston, 
MA, USA. New York: IEEE; 2015:3431-40.

25.	Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. 
In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: 
Springer; 2015.

26.	Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: A nested u-net architecture for medical image 
segmentation. In:  Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical 
Decision Support. Cham: Springer; 2018:3-11.

27.	Alom MZ, Hasan M, Yakopcic C, et al. Recurrent residual convolutional neural network based on u-net 
(r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955. 2018.

28.	Ibtehaz N, Rahman MS. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical 
image segmentation. Neural Netw. 2020;121:74-87.

29.	Sun J, Zhang J, Wen Y, et al. SAUNet: Shape attentive U-Net for interpretable medical image 
segmentation. In:  International Conference on Medical Image Computing and Computer-Assisted 
Intervention. Cham: Springer; 2020.

30.	Tong X, Chen M, Nie D, et al. ASCU-Net: Attention gate, spatial and channel attention U-Net for skin 
lesion segmentation. Diagnostics (Basel). 2021;11(3):501.

31.	Li C, Sun S, Liu W, et al. MRFU-Net: A multiple receptive field U-Net for environmental microorganism 
image segmentation. In: Information Technology in Biomedicine. Cham: Springer; 2021:27-40.

32.	Han C, Hayashi H, Rundo L, et al. GAN-based synthetic brain MR image generation. In: Proceedings of 



Ulus Med J.

28AI in Radiology

Özdikici M. Ulus Med J. 2025;3(1):9-28

the IEEE 15th International Symposium on Biomedical Imaging (ISBI); 2018 Apr 4-7; Washington, DC, 
USA. New York: IEEE; 2018:734-38.

33.	Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 
2016;278:563-77.

34.	van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the 
radiographic phenotype. Cancer Res. 2017;77.

35.	Szczypiński PM, Strzelecki M, Materka A, Klepaczko A. MaZda—a software package for image texture 
analysis. Comput Methods Programs Biomed. 2009;94:66-76.

36.	Nioche C, Orlhac F, Boughdad S, et al. LIFEx: A freeware for radiomic feature calculation in 
multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer 
Res. 2018;78:4786-89.

37.	Zhang L, Fried DV, Fave XJ, et al. IBEX: An open infrastructure software platform to facilitate collaborative 
work in radiomics. Med Phys. 2015;42:1341-53.

38.	Williams GJ. Rattle: A data mining GUI for R. The R Journal. 2009;1:45-55.

39.	Witten IH, Frank E, Hall MA, Pal CJ. Data mining: Practical machine learning tools and techniques. 4th 
ed. San Francisco: Morgan Kaufmann Publishers Inc; 2016.

40.	Shayesteh SP, Alikhassi A, Fard Esfahani A, et al. Neo-adjuvant chemoradiotherapy response prediction 
using MRI-based ensemble learning method in rectal cancer patients. Phys Med. 2019;62:111-19.

41.	Serhatlıoğlu S, Hardalaç F. Yapay Zekâ teknikleri ve radyolojiye uygulanması [Artificial Intelligence 
Techniques and Their Application in Radiology]. Fırat Tıp Dergisi. 2009;14(1):1-6. Turkish

42.	Mannil M, von Spiczak J, Muehlematter UJ, et al. Texture analysis of myocardial infarction in CT: 
Comparison with visual analysis and impact of iterative reconstruction. Eur J Radiol. 2019;113:245-50.

43.	Liu Y, Chen J, Hai J, et al. Three-dimensional semi-supervised lumbar vertebrae region of interest 
segmentation based on MAE pre-training. J Xray Sci Technol. 2025;33(1):270-282.

Publisher's Note: Unico's Medicine remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


